MTH 203: Introduction to Groups and Symmetry Homework VIII

(Due 17/11/2022)

Problems for submission

1. Consider the set of 8 symbols

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

with a product operation satisfying the following sets of relations:

- $i^{2}=j^{2}=k^{2}=-1$.
- $i j=k, j k=i, k i=j$. (or equivalently, $i j k=-1$.)
- $(-1)^{2}=1$.
(a) Show that relations above induce a binary operation on Q_{8} under which it forms a non-abelian group called the group of quaternions.
(b) Show that Q_{8} has a unique subgroup of order 2 given by $\{ \pm 1\}$, which is also its center.
(c) Show that Q_{8} has exactly three distinct subgroups of order 4, all of which are cyclic, namely:

$$
\langle i\rangle=\{ \pm 1, \pm i\},\langle j\rangle=\{ \pm 1, \pm j\}, \text { and }\langle k\rangle=\{ \pm 1, \pm k\} .
$$

(d) Show that Q_{8} is not isomorphic to D_{8}.

Problems for practice

1. Let $R_{x, \theta} \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ denote the counterclockwise rotation about a point $x \in \mathbb{R}^{2}$ by an angle θ. Show that for rotations $R_{x_{1}, \theta_{1}}, R_{x_{2}, \theta_{2}} \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ such that $\theta_{1}+\theta_{2}=2 k \pi$ for some $k \in \mathbb{Z}$, the product $R_{x_{1}, \theta_{1}} R_{x_{2}, \theta_{2}} \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ is a translation.
2. Let $\mathbb{R}_{n}[x]$ be the additive group of all polynomials of degree $\leq n$ in the variable x with coefficients from \mathbb{R}. For $1 \leq k \leq n$, let $D_{k}: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{n}[x]$ be the $k^{t h}$ derivative map defined by

$$
D_{k}(p(x))=\frac{d^{k}}{d x^{k}}(p(x)), \forall p(x) \in \mathbb{R}_{n}[x] .
$$

(a) Show that D_{k} is a homomorphism.
(b) Determine Ker D_{k} and $\operatorname{Im} D_{k}$.
(c) Show that $\mathbb{R}_{n}[x] / \mathbb{R}_{n-1}[x] \cong \mathbb{R}$.
3. Consider the group $G=A_{4}$.
(a) Describe the order 2 subgroups of G.
(b) Describe the order 3 subgroups of G.
(c) Does G have an element g with $o(g) \geq 4$? Explain why, or why not.
(d) Show that G has a unique subgroup of order 4.
4. (a) Is the group $\mathrm{SO}(2, \mathbb{R})$ abelian? Prove or disprove.
(b) Describe two distinct monomorphisms $\mathrm{SO}(2, \mathbb{R}) \rightarrow \mathrm{SO}(3, \mathbb{R})$.
(c) Show that $\mathrm{SO}(3, \mathbb{R})$ is non-abelian.
5. Let G be a finite group of order n.
(a) Show that for each $g \in Z(G)$, the conjugacy class $[g]_{c}=\{g\}$.
(b) Let g_{1}, \ldots, g_{k} be the the representatives of the distinct conjugacy classes in $G \backslash Z(G)$. Show that

$$
n=|Z(G)|+\sum_{i=1}^{k}\left|\left[g_{i}\right]_{c}\right|
$$

(c) Suppose that $n=p^{2}$, where p is prime. Assuming the fact that $p\left|\left|\left[g_{i}\right]_{c}\right|\right.$, for each i, show that G is abelian.

